ECG Denoising Methodology using Intrinsic Time Scale Decomposition and Adaptive Switching Mean Filter
B.T. Krishna1, P.S.Kameswari2
1Dr Battula Tirumala Krishna, Professor, Department of Electronics and Communication Engineering JNTUK Kakinada, India.
2Putti Siva Kameswaari, M.Tech, Deaprtment Electronics and Communication Engineering, JNTUK Kakinada, India.
Manuscript received on 01 March 2021 | Revised Manuscript received on 06 March 2021 | Manuscript Accepted on 15 May 2021 | Manuscript published on 30 May 2021 | PP: 7-12 | Volume-1 Issue-2, May 2021 | Retrieval Number: 100.1/ijsp.B1005041221 | DOI: 10.54105/ijsp.B1005.051221
Open Access | Ethics and Policies | Cite | Mendeley | Indexing and Abstracting
© The Authors. Published by Lattice Science Publication (LSP). This is an open access article under the CC-BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Abstract: Electrocardiogram (ECG) is a widely employed tool for the analysis of cardiac disorders. A clean ECG is often desired for proper treatment of cardiac ailments. However, in the real scenario, ECG signals are corrupted with various noises during acquisition and transmission. In this article, an efficient ECG de-noising methodology using combined intrinsic time scale decomposition (ITD) and adaptive switching mean filter (ASMF) is proposed. The standard performance metric namely output SNR improvement measure the efficacy of the proposed technique at various signal to noise ratio (SNR). The proposed de-noising methodology is compared with other existing ECG de-noising approaches. A detail qualitative and quantitative study and analysis indicate that the proposed technique can be used as an effective tool for de-noising of ECG signals and hence can serve for better diagnostic in computer-based automated medical system. The performance of the proposed work is compared with existing ECG de-noising techniques namely wavelet soft thresholding based filter (DWT) [16], EMD with DWT technique [18], DWT with ADTF technique [19]. The effectiveness of the presented work has been evaluated in both qualitative and quantitative analysis. All the simulations are carried out using MATLAB software environment.
Keywords: Adaptive Switching Mean Filter, Electrocardiogram, Intrinsic Time Scale Decomposition, Signal to Noise Ratio.
Scope of the Article: Signal Processing