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Abstract: In statistical signal processing, power spectral density 

estimation is a frequency domain analysis in which power contents 

of a signal are measured with respect to frequency components of 

that signal.  The power  estimation  of a signal can be carried out 

more precisely by using a window with a narrower 3-dB bandwidth 

and higher side-lobe attenuation. Theoretically, these two spectral 

parameters show trade-off in variable windows and remain 

constant in fixed windows. In this work, spectral behavior of fixed 

windows has been elaborated using Fractional Fourier Transform 

(FRFT) keeping their inherent time domain behavior intact. The 

FRFT is an extension of conventional Fourier transform with an 

additional variable parameter, known as rotation angle, which 

makes it more flexible and useful in various signal processing 

applications viz. power estimation and designing of tunable 

transition band FIR filters.  In this article, variability in 3-dB 

bandwidth and sidelobe attenuation of fixed windows has been 

achieved by exploiting the available flexibility in FRFT and 

obtained variability has been applied in the estimation of signal 

power. Simulation results demonstrate that both of these two 

spectral parameters are improved and hence, trade-off problem 

between resolution and spectral leakage in the power spectral 

density estimation is overcome upto an extent. 

    Keywords: Spectral Variability, Fractional Fourier Transform, 

Power Spectral Density Estimation, Fixed Windows. 

I. INTRODUCTION 

   The spectral estimation is the most important 

characteristic to calculate Power Spectral Density (PSD) for 

analysis and processing of random signals and power signals 

[1]. The PSD is theoretically computed by using the signal 

observed in the infinite-time duration. However, practically it 

is impossible to use such an infinite-time signal; rather only a 

finite-time signal is taken into the consideration. This is 

equivalent to a truncation of infinite-time signal to finite 

length by applying a rectangular window. Therefore, the 

estimated PSD can be considered convolution between the 

theoretical PSD and the spectrum of a rectangular window in 

frequency domain. In other words, it can be said that the 

accuracy of the estimated PSD is directly correlated by the 

window that is used for PSD estimation. 
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In the conventional Fourier transform (FT) based spectrum of 

window functions, the side-lobe attenuation (SLA), 3-dB 

bandwidth, and side-lobe fall-off rate (SLFOR) are three 

performance measuring parameters for PSD estimation 

[2,3,4].  The SLA is the difference between the magnitude of 

the main-lobe and the maximum side-lobe level (MSLL). The 

SLFOR is the asymptotic decay rate of side-lobe peaks. 

Better resolution of the estimated PSD can be obtained if 3-

dB bandwidth is reduced. Spectral leakage [5,6,7] can be 

reduced by increasing the SLA and SLFOR. Therefore, an 

ideal window for PSD estimation has zero bandwidth and 

infinite SLA like impulse function in the frequency domain. 

Conventional windows, such as Kaiser, Gaussian, Dolph- 

Chebyshev, and so on [2, 8,9,10,11,12,13], are generally able 

to control the 3-dB bandwidth or SLA by one variable 

parameter; while fixed windows, e. g. rectangular (RW), 

generalized Hamming (GHW; Hanning and Hamming), 

Blackman (BW), and  Triangular (TW), have all these three 

parameters constant. This causes a fixed resolution and 

spectral leakage in the estimated PSD of a signal. Therefore, 

it is desirable to have some control over 3-dB bandwidth and 

SLA of fixed windows spectrum. The fixed windows with 

fractional Fourier transform (FRFT), which has got several 

recent applications in signal processing 

[14,15,16,17,18,19,20,21], are expected to overcome this 

problem. FRFT which is a generalization of the FT with an 

additional degree of freedom, better known as FRFT order 

‘a’, transforms a time domain signal into variable fractional 

domain in place of fixed frequency domain. In this work, 

discrete version of FRFT [22] has been used for the 

estimation of PSD of a discrete signal using discrete fixed 

windows. 

The continuous-time FRFT of a signal x (t) is given as [16]-  

𝑋𝛼(𝑢) = ∫ 𝑥(𝑡)𝐾𝛼

∞

−∞

(𝑡, 𝑢)𝑑𝑡                                        (1) 

where, α = aπ / 2 is the rotation angle of the transformed 

signal and Kα (t, u) is the transformation kernel of the FRFT 

is defined as- 

𝐾𝛼(𝑡, 𝑢)

=

{
 
 

 
 
√
1 − 𝑖𝑐𝑜𝑡(𝛼)

2𝜋
𝑒
𝑖(
𝑢2+𝑡2

2
)𝑐𝑜𝑡(𝛼)−𝑖𝑢𝑡𝑐𝑜𝑠𝑒𝑐(𝛼)

  𝑖𝑓 𝛼 ≠ 𝑛𝜋

𝛿(𝑡 − 𝑢)                                                𝑖𝑓 𝛼 = 2𝑛𝜋

𝛿(𝑡 + 𝑢)                                    𝑖𝑓 (𝛼 + 𝜋) = 2𝑛𝜋

  (2) 

 In this paper, FRFT based analysis of all four fixed windows 

has been done and it has been observed that their spectral 

parameters can be made variable upto some extent.  
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It has also been observed that spectral characteristics of these 

windows get reversed after certain window length (has been 

termed as ‘limiting length’) while varying FRFT order ‘a’ 

from 1 to 0.  A generalized relationship for the limiting length 

of fixed windows in terms of window length and padded 

zeros has been established. This relationship has been utilized 

to introduce spectral variability in fixed windows which is 

applied PSD estimation.  

   The rest of the paper is organized as follows. In Section II, 

brief introduction about PSD estimation is presented. Section 

III presents the establishment of relationship for limiting 

length. Results and performance analysis has been included 

in Section IV. Finally, Section V concludes this paper.  

II. POWER SPECTRAL DENSITY ESTIMATION 

The PSD of a signal 𝑥(𝑡) is the FT of its autocorrelation. 

Therefore, it can be assumed that estimating the PSD is 

equivalent to estimating the autocorrelation. Mathematically, 

PSD 𝑃𝑥(𝑓) is obtained by- 

𝑃𝑥(𝑓) = ∫  𝑟𝑥(𝜏)𝑒
−2𝜋𝑓𝜏∞

−∞
𝑑𝜏                                         (3)  

where  𝑟𝑥(𝜏) is the autocorrelation function of signal 𝑥(𝑡). In 

practice, it is not possible to use infinite duration signal. 

Therefore, PSD of a finite-time signal is obtained by the 

truncation of infinite duration time domain signal using a 

suitable window function, which is denoted in [23, 24]  

as-  𝑃𝑥̅(𝑓) = ∫  𝑤(𝜏) 𝑟𝑥(𝜏)𝑒
−2𝜋𝑓𝜏∞

−∞
𝑑𝜏                           (4)  

where, 𝑤(𝜏) is window function of duration {−
𝑇

2
𝑡𝑜 

𝑇

2
}. 

In FT property, multiplication of two functions in time 

domain corresponds to convolution in frequency domain. 

Thus, the PSD can also be defined as- 

𝑃𝑥̅(𝑓) = 𝑊(𝑓) ⊛ 𝑅𝑥(𝑓)                              (5)  

where, ‘⊛’ denotes convolution operation while 𝑊(𝑓) and 

𝑅𝑥(𝑓)  are the spectrums of window and autocorrelation 

function respectively. Therefore, it can be stated that the 

frequency resolution and spectral leakage in PSD estimation 

solely depend on the spectral properties of used window 

function.  

  In this work, estimation of PSD has been carried out using 

FRFT to exploit its additional features over FT. Therefore, 

relationship (5) has been modified as- 

 𝑃𝑥̅(𝑓) = 𝑊𝛼(𝑓) ⊛ 𝑅𝑥(𝑓)                                          (6) 

where, 𝑊𝛼(𝑓) is the fractional domain spectrum of a window 

used in PSD estimation. 

III. CALCULATION OF LIMITING LENGTH 

FOR FIXED WINDOWS 

The FRFT is an identity operator when a = 0, whereas, it maps 

the signal into frequency domain for a = 1. Thus, if the FRFT 

order a lies between 0 and 1 signal will be composed of 

frequency and time components both. In FT domain, the null 

bandwidth (NBW; position of first null in the spectrum of a 

window function) is having inverse relationship to the 

window length and the product of these two parameters 

remains constant for every window function. This property of 

window functions can be described by the uncertainty 

principle [25], according to which, a function cannot be 

highly concentrated in both time and frequency domains. If 

the window length is small the NBW is large and at a 

particular window length these two parameters become equal 

and for further increments in the window length NBW 

becomes smaller than the window length. This property of 

window functions has been exploited in this work to analyze 

the behavior of windows about this particular window length 

in fractional Fourier domain.  It has been observed in 

fractional domain simulation studies that the NBW shrinks 

for small window length and expands for large window length 

when the FRFT order is varied from 1 to 0. This behavior is 

justified by the uncertainty principle because the FRFT plane 

moves towards time axis when ‘a’ is varied from 1 to 0. Thus, 

the FRFT provides another parameter to vary the NBW 

without varying the window length.  

   Simulation studies establish that the time spread of discrete 

windows padded with M zeros equals the main-lobe width of 

window function at a ‘limiting length’ (NL) for a = 1. To find 

this limiting length NL, time and frequency domain spreads of 

four fixed windows have been shown in Figures 1-4. The x-

axis of both the domains of N sampled and M zero padded 

windows has been normalized in the same range i.e. -0.5 to 

0.5, however, they have been shown only in the range of -0.1 

to 0.1 for the sake of clarity. It can be seen from Figure 4.7 

that the non-zero time spread of half of the RW is given by 

(N+1)/2 and N/2 for N odd and even respectively. The 

corresponding NBW of RW is given by (M+N)/N.  This 

equality for a RW results from the following facts- 

(i) Half width of window in time domain, in terms of 

number of samples is (N+1)/2 (for N odd) or N/2 ((for N 

even). 

(ii) In FT based spectrum, NBW in continuous domain is 

fixed i.e., 2π/τ [26]. 

(iii) In FRFT based spectrum, NBW in continuous domain 

varies with ‘a’ as 
2𝜋

𝜏
𝑆𝑖𝑛 (

𝑎𝜋

2
) [27]. 

(iv) In discrete domain τ equals N, so the NBW in discrete 

domain equals 2π/N. 

(v) In frequency domain 2π corresponds to the total number 

of samples in a function. Hence, for a window width of 

N samples padded with M zeroes, 2π in frequency 

domain equals N+M. 

(vi) So, the NBW width of a RW of length N padded with M 

zeroes in discrete domain is given by (M+N)/N. 
 

Thus, the generalized expression for the limiting length, NL,  

of fixed windows at which half width of the window function 

in time domain equals the NBW in frequency domain can be 

obtained using above mentioned facts for 𝑎 = 1, as- 

                           
𝑁+1

2
=

(𝑀+𝑁)𝑝

𝑁
               𝑖𝑓 𝑁  𝑖𝑠 𝑜𝑑𝑑 

                     
𝑁

2
=

(𝑀+𝑁)𝑝

𝑁
                  𝑖𝑓 𝑁 𝑖𝑠 𝑒𝑣𝑒𝑛        (7) 

where, M equals number of padded zeroes on either sides of 

the window function to increase the resolution. Since NBW 

for GHW & TW is twice that of NBW of RW and thrice for 

BW [5]. Therefore, p = 1 for RW, 2 for GHW & TW and 3 

for BW.  
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The mathematical relation given in (7) is a quadratic equation 

and its positive root, defines the ‘limiting length’ of window 

functions, which is given as- 

        𝑁𝐿 = 𝑝 + 𝑝√1 +
2𝑀

𝑝
                                                     (8) 

Table-1 includes the calculated values of limiting lengths, NL, 

using (8) for four fixed window functions. The time and 

frequency spread of these windows about the calculated 

limiting lengths are shown in Figures 1, 2, 3 and 4. These 

simulation results also support the analytical relationship for 

NL given by (8). 

 
Figure 1: Expanded view of RW in (a) time domain (b) frequency domain for different lengths N and M = 512 with a 

= 1. 

 
Figure 2: Expanded view of Hanning window in (a) time domain (b) frequency domain for different lengths N and M 

= 768 with a = 1. 

 

https://doi.org/10.54105/ijsp.C1015.083323
https://www.ijsp.latticescipub.com/


 

Spectral Variability in Fixed Windows using Fractional Fourier Transform: Application in Power Spectral Density 

Estimation 

4 

Published By: 

Lattice Science Publication (LSP) 
© Copyright: All rights reserved. 

Retrieval Number:100.1/ijsp.C1015083323 

DOI: 10.54105/ijsp.C1015.083323 
Journal Website: www.ijsp.latticescipub.com 

 

 
Figure 3: Expanded view of BW in (a) time domain (b) frequency domain for different lengths N and M = 1024 with a 

= 1. 

 
Figure 4: Expanded view of TW in (a) time domain (b) frequency domain for different lengths N and M = 1280 with a 

= 1. 
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Spectral variability of these four fixed windows about their limiting lengths is shown in Figures 5, 6, 7 and 8. It is observed 

that when window length N is less than NL, the main-lobe lobe width of the windows shrinks as FRFT order is reduced from 1 

to 0, while for N > NL the main-lobe exhibits a reverse behavior for the same variation in FRFT order. 

 

Figure 5: Spectral variability in RW with different ‘𝑎’ for (i) N = 27 (< NL) and M = 512 (ii) N = 37 (> NL) and M = 512. 

 
Figure 6: Spectral variability in HW with different ‘𝑎’ for (i) N = 50 (< NL) and M = 768 (ii) N = 70 (> NL) and M = 

768. 

 

Figure 7: Spectral variability in BW with different ‘𝑎’ for (i) N = 70 (< NL) and M = 1024 (ii) N = 90 (> NL) and M = 

1024. 
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Figure 8: Spectral variability in TW with different ‘𝑎’ for (i) N = 61 (< NL) and M = 1280 (ii) N = 81 (> NL) and M = 

1280. 

IV. SIMULATION AND PERFORMANCE ANALYSIS 

In this paper, PSD of an example signal 𝑥(𝑡) = 5 cos(30𝜋𝑡) + 2.5 cos(50𝜋𝑡) + 1.25 cos(70𝜋𝑡) has been estimated by fixed 

windows using FRFT. The signal has been sampled with sampling frequency of 100 Hz. Therefore, the signal contains three 

normalized frequency components at 0.15, 0.25 and 0.35. The estimated PSD in fractional domain using RW, HW, BW, and 

TW are shown in Figures 9, 10, 11 and 12 respectively with window lengths less than their limiting lengths and different 

number of zeroes padded. It can be observed from Figure 9 that all three frequency components has negligible resolution in 

the estimated PSD using RW with FRFT order a = 1 because of wide 3-dB bandwidth and lower SLA. These two performance 

parameters get improved as FRFT order ‘a’ is reduced from 1 to 0.1 as shown in Figure 9. Similar behavior has also been 

observed for other three fixed windows as shown in Figures 10-12. The comparative performance of estimated PSD using 

fixed windows in factional domain is included in Table-2. 

 

Figure 9: Estimated PSD using RW with different ‘𝑎’ for N=27 (< NL) and M = 512. 
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Figure 10: Estimated PSD using HW with different ‘𝑎’ for N =43 (< NL ) and M = 768. 

 
Figure 11: Estimated PSD using BW with different ‘𝑎’ for N = 53 (< NL) and M = 1024. 

 
Figure 12: Estimated PSD using TW with different ‘𝑎’ for N = 61 (< NL) and M = 1280. 
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Table-1: Limiting Lengths for Fixed Window Functions 

Window Type Number of padded zeroes, M Limiting length, NL 

RW 

GHW 

BW 

TW 

512 

768 

1024 

1280 

33 

59 

81 

75 

Table-2: Comparative Spectral Characteristics of Fixed Windows in Factional Domain 

Window Type 
3-dB bandwidth MSLL (dB) 

a = 1 
a = 0.1 a = 1 a = 0.1 

RW 

HW 

BW 

TW 

0.068 

0.048 

0.033 

0.031 

0.038 

0.038 

0.024 

0.023 

-19.21 

-21.10 

-22.72 

-22.79 

-28.42 

-24.36 

-27.71 

-29.71 

V. CONCLUSION 

In this article, additional degree of freedom in FRFT has been 

exploited to achieve frequency domain behavioral variability 

in commonly used fixed windows which are considered 

invariable in both the domains. This work has got success to 

attain some extent of spectral variation and improvement in 

the performance parameters of fixed windows i.e. 3-dB 

bandwidth and side-lobe attenuation. Obtained spectral 

variability has been found useful to propose the FRFT based 

approach in PSD estimation which is supposed to solve trade-

off problem between these two parameters. Simulation results 

clearly show that the proposed method offers enhanced 

resolution along with reduced spectral leakage 

simultaneously.  
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